NASA Facts National Aeronautics and Space Administration Lyndon B. Johnson Space Center International Space Station June 1997 ## INTERNATIONAL SPACE STATION ASSEMBLY SEQUENCE (9/30/97 Rev C) | Date | Flight | Launch
Vehicle | Configuration | Element(s) | Rationale | |--------------|--------|-------------------|---------------|---|--| | June
1998 | 1A/R | Russian | | Functional Cargo
Block (FGB) | FGB is a self-supporting active vehicle. It provides propulsive control capability and power through the early assembly stages. It provides fuel storage capability. It provides rendezvous and docking capability to the Service Module. | | July
1998 | 2A | US
Orbiter | | • Node 1 • Pressurized Mating Adapters -1 & -2 | Launched passive with PMA-1, PMA-2 and 1 stowage rack. PMA-1 provides the interfaces between US and Russian elements. PMA-2 provides a Shuttle docking location. Eventually, Node 1's six ports will provide connecting points for the Z1 truss; U.S. lab; airlock; cupola; Node 3; and the early MPLM as well as the FGB. | | Dec
1998 | 1R | Russian | | Service Module | Primary Russian element. It provides Environmental Control & Life Support System (ECLSS) functions to all elements. Primary docking for Progress-type resupply vehicles Provides propulsive attitude control and reboost capability | | Dec
1998 | 2A.1 | US
Orbiter | | Spacehab Double
Cargo Module | Logistics and resupply cargo | | Jan
1999 | 3A | US
Orbiter | | Integrated Truss Structure (ITS) Z1 PMA-3 Ku-band Control Moment Gyros (CMGs) | ITS Z1 allows the temporary installation of the P6 Photovoltaic (PV) module to Node 1 for early US based power Ku-band communication system supports early science capability on 6A CMGs provide non-propulsive attitude control when activated on 5A PMA-3 provides a Shuttle docking for the P6 PV Module on 4A and Lab installation on flight 5A | | Jan
1999 | 2R | Russian | | Soyuz | Establishes first station manning with three-person crew Provides assured crew return capability without the Orbiter present | | Date | Flight | Launch
Vehicle | Configuration | Element(s) | Rationale | |---------------|--------|-------------------|---------------|--|--| | April
1999 | 4A | US
Orbiter | | • ITS P6 | Establishes initial US PV Module based power capability Installed in a temporary location on top of the Z1 Truss until Flight 1J/A when it is permanently attached to the P5 Truss Includes 2 PV Thermal Control System (TCS) radiators for early active thermal control. Also, the S-band communications system is activated. | | May
1999 | 5A | US
Orbiter | | • Lab | Provides initial US user capability Launched with 5 system racks preintegrated CMGs are activated | | June
1999 | 6A | US
Orbiter | | MPLM (Lab outfitting flight) Ultra High Frequency (UHF) antenna Space Station Remote Manipulating System (SSRMS) | Adds US LAB outfitting with 6 system racks, one storage rack UHF antenna provides space-to-space communications capability for US based EVA Delivers Canadian SSRMS needed to perform assembly operations on later flights | | Aug
1999 | 7A | US
Orbiter | | Joint Airlock High Pressure
Gas Assembly | Airlock provides Station-based EVA capability
for US and Russian suits High pressure gas assembly augments the Service
Module gas resupply system | | | | | Phase | II Compl | e t e | | Nov
1999 | 7A.1 | US
Orbiter | | • MPLM | U.S. stowage racks, ISPRs Two additional battery sets are delivered and installed on the P6 PV Module providing a full complement of batteries | | Dec
1999 | 4R | Russian | | • Docking
Compartment 1 | Provides egress, ingress for Russian based
Extravehicular Activity (EVA) and a Soyuz
docking port | | Date | Flight | Launch
Vehicle | Configuration | Element(s) | Rationale | |--------------|--------|-------------------|---------------|--|--| | Jan
2000 | UF-1 | US
Orbiter | | MPLM (ISPRs) PV Module batteries | Provides payload utilization delivering US Lab
ISPR racks; two storage racks | | Feb 2000 | 8A | US
Orbiter | | • ITS S0 • Mobile Transporter (MT) | ITS S0 provides attachment and umbilicals between pressurized elements and permanent truss-mounted distributed system/utilities Airlock spur provides an EVA translation path from the airlock to the truss The MT which provides the truss translation capability for the Mobile Servicing System is also delivered | | Mar
2000 | UF-2 | US
Orbiter | | • MPLM (ISPRs) • MBS • Lab Sys. | Provides additional payloads MBS provides truss based SSRMS capability Three additional stowage racks are delivered | | June 2000 | 9A | US
Orbiter | | • ITS S1 • CETA Cart A | Delivers the starboard US Central Thermal
Control System Radiators remain stowed until power system is
activated on flight 12A Provides second string of S-band capability The CETA Cart provides EVA crew translation
capability along the truss | | July
2000 | 9A.1 | US
Orbiter | | SPP with four
solar arrays | Delivery of the Russian power/control mast with four solar arrays providing additional Russian power Delivers European Robotic Arm (ERA) | | Oct
2000 | 11A | US
Orbiter | | ITS P1 CETA Cart B | Delivers the port US central thermal control system Radiators remain stowed until power system is activated on flight 12A The CETA Cart provides EVA crew translation capability along the truss | | Date | Flight | Launch
Vehicle | Configuration | Element(s) | Rationale | |-------------|--------|-------------------|---------------|---|---| | Nov
2000 | 12A | US
Orbiter | | • ITS P3/P4 | Provides additional US power Port & starboard central TCS radiators are deployed and activated Transition from early P6 based power to permanent truss based power begins | | Dec 2000 | 3R | Russian | | Universal Docking Module | Provides docking locations for Russian Research
Modules, Life Support Modules and a second
docking compartment (DC2) for Soyuz vehicles | | Dec 2000 | 5R | Russian | | • Docking
Compartment 2
(DC2) | Replaces discarded DC1 | | Mar
2001 | 13A | US
Orbiter | 1411 | • ITS S3/S4 | Provides additional US power The P6 PV module solar arrays are retracted in preparation for relocation on 1 J/A | | Apr 2001 | 10A | US
Orbiter | | Node 2Nitrogen tank
assembly | Node 2 provides attach locations for the Japanese Experiment Module, the ESA Columbus Orbital Facility, the Centrifuge Accomodation Module and later Mini-Pressurized Logistics Modules Establishes the primary docking location for the Shuttle Nitrogen tank assembly added to sidewall carrier | | May 2001 | 1J/A | US
Orbiter | | JEM ELM PS ITS P5 High Pressure
O2 tanks | Delivers 4 JEM system racks and 1 stowage rack allowing 1 fault-tolerant JEM PM activation on the next flight 3 JEM ISPRs delivered providing utilization on the next flight ITS P5 spacer provides clearance between port PV modules enabling P6 PV module relocation | | Date | Flight | Launch
Vehicle | Configuration | Element(s) | Rationale | |-------------|--------|-------------------|---------------|--|---| | Aug
2001 | 1Ј | US
Orbiter | | • JEM PM | Japanese Experiment Module is delivered & activated (four JEM sys. racks) JEM RMS is delivered & activated | | Sep
2001 | UF-3 | US
Orbiter | | • MPLM (ISPRs) | Provides for payload resupply and/or changeout | | Jan
2002 | UF-4 | US
Orbiter | | • Express Pallet • SLP (SPDM, ATA, HP Gas) | Express Pallet transports external payloads Special Purpose Dexterous Manipulator ("Canada Hand") provides robotics maintenance capability Spacelab Palllet (SLP) carries Special Purpose Dexterous Manipulator ("Canada Hand") which provides robotics maintenance capability; Ammonia Tank Assembly (ATA); and High Pressure Gas O2 tank. | | Feb 2002 | 2J/A | US
Orbiter | | JEM EF ELM ES PV Module
Batteries | Delivers JEM exposed experimental facilities PV batteries complete battery complements on PV modules P4 & S4 | | Feb 2002 | 9R.1 | Russian | | Docking &
Stowage
Module-1 | Mounted to the FGB nadir port Provides additional on-orbit stowage and a Soyuz docking location | | May 2002 | 9R.2 | Russian | | Docking &
Stowage
Module- 2 | Mounted to Docking and Stowage Module-1 Provides additional on-orbit stowage and a Soyuz docking location | | Date | Flight | Launch
Vehicle | Configuration | Element(s) | Rationale | |--------------|--------|-------------------|---------------|--|---| | May 2002 | 14A | US
Orbiter | | Cupola and Port
Rails (on SLP) 4 SPP Solar
Arrays | Cupola provides direct viewing capability for
some robotics operations and payload viewing Completes Solar Power Platform solar arrays | | June 2002 | UF-5 | US
Orbiter | | MPLM (ISPRs) Express Pallet | Provides for payload resupply and/or changeout Express Pallet transports external payloads | | July
2002 | 20A | US
Orbiter | | • Node 3 | Delivers Node 3 to be attached underneath Node 1. 2 avionics and 2 ECLSS racks delivered. Node 3 provides attachment points for the U.S. Habitation Module, the Crew Return Vehicle and PMA-3 | | Aug
2002 | 8R | Russian | | Research Module 1 | Provides Russian experiments and research facilities | | Oct 2002 | 1E | US
Orbiter | | Columbus Orbital Facility | European Space Agency (ESA) research facility provides additional research capability | | Nov
2002 | 10R | Russian | | • Research Module 2 | Provides Russian experiments and research facilities | | Date | Flight | Launch
Vehicle | Configuration | Element(s) | Rationale | |-------------|--------|-------------------|---------------|--------------------------------------|--| | Nov
2002 | 17A | US
Orbiter | | • MPLM • Node, Lab racks | Outfits Node 3 with 4 racks – 2 Environmental
Control and Life Support System racks and 2
Flight Crew Equipment racks (waste collection
system and galley) Three Crew Health Care System racks delivered Delivers 1 U.S. Lab rack, 1 stowage rack, ISPRs | | Jan
2003 | 11R | Russian | | • Life Support
Module 1
(LSM1) | Life Support Module provides oxygen
regeneration capability & other life support
functions | | Mar 2003 | 12R | Russian | | • Life Support
Module 2
(LSM2) | Second Life Support Module provides oxygen
regeneration capability & other life support
functions | | Mar
2003 | 18A | US
Orbiter | | • CRV 1 | Crew Return Vehicle attached to the station
provides additional 4-person crew return
capability added to already existing 3-person
Soyuz crew return capability | | Apr 2003 | 19A | US
Orbiter | | • MPLM | Delivers 4 crew quarters racks to be placed in
Node 2 and provide for transition to 6-person
crew Delivers 6 U.S. stowage racks | | Jul
2003 | 15A | US
Orbiter | | • PV Module S6 | Fourth U.S. truss-based PV module completing the major power system elements Starboard MT/CETA rails | | Date | Flight | Launch
Vehicle | Configuration | Element(s) | Rationale | |-------------|--------|-------------------|---------------|---|---| | Aug
2003 | UF-6 | US
Orbiter | | • MPLM (ISPRs) | Provides for payload resupply and/or changeout Delivers two photovoltaic batteries to complete station battery outfitting | | Oct 2003 | UF7 | US
Orbiter | | Centrifuge Accomodations Module | Centrifuge Accommodations Module attached to
Node 2 zenith port enhances user research
capabilities | | Dec 2003 | 16A | US
Orbiter | | • U.S. Habitation
Module | Delivers U.S. Habitation Module to enhance crew accomodations. | ## **NOTES:** • Additional Progress, Soyuz, H-II Transfer Vehicle and Automated Transfer Vehicle flights for crew transport, logistics and resupply are not listed.